Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

S1.	Subject	SEMESTER I	L	Т	Р	С
No.	Code		Ľ	-	-	U
1	ECS 5101	Design and Analysis of Algorithms	3	0	2	4
2	ECS 5102	Foundations of Computer Systems	3	0	2	4
3	EMC 5103	Probability and Statistics	3	0	2	4
4	EHS 5104	Technical Writing and Soft Skill/Capstone Project	1	2	2	4
5		DE-1(Elective 1)	3	0	0	3
	TOTAL		13	2	8	19

**Capstone Project (Optional) online industry case study

S1.	Subject	SEMESTED II	т	т	D	С
No.	Code	SENIESTER II	L	L	I	U
1	ECS 5201	Artificial Intelligence	3	0	2	4
2	EMC 5202	Numerical Linear Algebra and Optimization Techniques	3	0	2	4
3		DE-2(Elective 2)	3	0	0	3
4		DE-3(Elective 3)	3	0	0	3
5		IKS	2	0	0	2
	TOTAL		14	0	4	16

Sl. No.		SEMESTER III	L	Т	Р	С
1		DE-4(Elective 4)	3	0	0	3
2		DE-5(Elective 5)	3	0	0	3
3		Project I	0	0	34	17
	TOTAL		6	0	34	23

Sl. No.		SEMESTER IV	L	Т	Р	С
1		DE-6(Elective 6)	3	0	0	3
2		DE-7(Elective 7)	3	0	0	3
3		Project II	0	0	40	20
	TOTAL		6	0	40	26

Total credits = 84

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Electives for Executive M.Tech Cloud Computing:

Sl. No.	Subject Code	Elective-I	L	Т	Р	С
1	ECC 6101	Application development framework	3	0	0	3
2	ECC 6102	Python for cloud computing	3	0	0	3
3	ECC 6103	Advanced Cloud Computing	3	0	0	3

Sl. No.	Subject Code	Elective-II, III	L	Т	Р	С
1	ECC 6201	Cloud computing Architecture	3	0	0	3
2	ECC 6202	Cloud Security	3	0	0	3
3	ECC 6203	Advanced Edge Computing	3	0	0	3
4	ECC 6204	Parallel Algorithms	3	0	0	3
5	ECC 6205	Data Virtualization and Dashboards	3	0	0	3

SI. No.	Subject Code	Elective-IV, V	L	Т	Р	С
1	ECC 6301	Cloud strategy planning and Management	3	0	0	3
2	ECC 6302	Cloud Based DevOps	3	0	0	3
3	ECC 6303	Distributed Systems	3	0	0	3
4	ECC 6304	Machine learning for cloud computing	3	0	0	3

SI. No.	Subject Code	Elective-VI, VII	L	Т	Р	С
1	ECC 6401	Meta Learning	3	0	0	3
2	ECC 6402	Service-oriented Architecture and Web Security	3	0	0	3
3	ECC 6403	Reinforcement Learning	3	0	0	3
4	ECC 6404	Data Warehousing	3	0	0	3

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Course number	ECS 5101
Course Credit	L-T-P-C: 3-0-2-4
Course Title	Design and Analysis of Algorithms
Learning Mode	Online
Learning Objectives	The objective of this course is to equip students with a solid understanding of data structures and algorithms, enabling them to design, analyze, and implement efficient algorithms to solve complex computational problems. The course covers fundamental topics such as data structures, complexity analysis, sorting and searching techniques, problem-solving strategies, graph algorithms, and advanced topics like string matching, FFT-DFT, and approximation algorithms. By the end of the course, students will have developed the skills to critically analyze algorithm efficiency and apply advanced algorithms in practical scenarios.
Course Description	This course will provide basic understanding of methods to solve problems on computers. It will also provide an overview to analyze those theoretically.
Course Outline	Data structures: linked list, stack, queue, tree, balanced tree, graph; Complexity analysis: Big O, omega, theta notation, solving recurrence relation, master theorem Sorting and searching: Quick sort, merge sort, heap sort; Sorting in linear time; Ordered statistics; Problem solving strategies: recursion, dynamic programming, branch and bound, backtracking, greedy, divide conquer, Graph algorithms: BFS, DFS, Shortest path, MST, Network flow; NP-completeness Advanced topics: string matching, FFT-DFT, basics of approximation and randomized algorithms. Lab Component: Implementation of above topics
Learning Outcome	By the end of this course, students will be able to: Use linked lists, stacks, queues, trees, balanced trees, and graphs. Analyze algorithm complexity and solve recurrence relations. Implement Quick sort, Merge sort, Heap sort, and linear time sorting methods. Apply recursion, dynamic programming, branch and bound, backtracking, greedy, and divide-and-conquer methods. Implement BFS, DFS, shortest path algorithms, MST, and network flow algorithms. Comprehend NP-completeness and its significance.
Assessment Method	Quiz / Assignment / ESE

Suggested Reading:

- Mark Allen Weiss, "Data Structures and Algorithms in C++", Addison Wesley, 2003.
- Adam Drozdek, "Data Structures and Algorithms in C++", Brooks and Cole, 2001.
- Aho, Hopcroft and Ullmann, "Data structures and Algorithm", Addison Welsey, 1984.
- Introduction to Algorithms Book by Charles E. Leiserson, Clifford Stein, Ronald Rivest, and Thomas H. Cormen

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Course Number	ECS 5102
Course Credit	L-T-P-C: 3-0-2-4
Course Title	Foundations of Computer Systems
Learning Mode	Online
Learning Objective	The objective of the course is to provide a conceptual and theoretical understanding of computer architecture and operating systems.
Course Description	Foundations of computer systems is a review of two fundamental subjects of computer science viz., computer architecture and operating systems.
Course Outline	 Computer architecture: Performance measures, Memory Location and Operations, Addressing Modes, Instruction Set, A Simple Machine, Instruction Mnemonics and Syntax, Machine Language Program, Assembly Language Program with examples. Processing Unit Design: Registers, Datapath, CPU instruction cycle, Instructions and Micro-operations in different bus architectures, Interrupt handling, Control Unit Design: Control signals, Hardwired Control unit design, Microprogram Control unit design. Pipelining and parallel processing, Pipeline performance measure, pipeline architecture, pipeline stall (due to instruction dependancy and data dependancy), Methods to reduce pipeline stall. RISC and CISC paradigms, I/O Transfer techniques, Memory organization: hierarchical memory systems, cache memories, virtual memory. Operating systems: Process states, PCB, Fork, exec system call, Threads, Process scheduling, Concurrent processes, Monitors, Process Synchronization, Producer Consumer Problem, Critical section, semaphore, Various process synchronization problems. Deadlock, Resource Allocation Graph, Deadlock prevention, Deadlock Avoidance: Banker's Algorithm and Safety Algorithm. Memory management techniques, Allocation techniques, Paging, Page Replacement Algorithms, Numericals. Lab Component: Implementation of above topics
Learning Outcome	This course will revisit two fundamental subjects of computer science viz., computer architecture and operating systems, thereby enabling the students to pursue more advanced problems in computer science based on these topics.
Assessment Method	Quiz / Assignment / ESE

Suggested readings:

1. A. Silberschatz, P. B. Galvin and G. Gagne, Operating System Concepts, 7th Ed, John Wiley and Sons, 2004.

2. M. Singhal and N. Shivratri, Advanced Concepts in Operating Systems, McGraw Hill, 1994.

3. David A Patterson and John L Hennessy, Computer Organisation and Design: The Hardware/Software Interface, Morgan Kaufmann, 1994. ISBN 1-55860-281-X.

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Course Number	EMC 5103
Course Credit (L-T-P-C)	L-T-P-C: 3-0-2-4
Course Title	Probability and Statistics
Learning Mode	Online
Learning Objective	To understand the basic concepts in Probability Theory and Statistics
	through practical examples.
Course Description	The course is divided into two parts: In first part, basic concepts of probability theory are introduced. In the second part, different problems in classical statistics are discussed.
Course Outline	Conditional probability, Bayes' rule, Total probability law, Independence of events. Random variables (discrete and continuous), probability mass functions, probability density functions, Expectation, variance, moments, cumulative distribution functions, Function of random variables, Multiple random variables, joint and marginal, conditioning and independence, Markov and Chebyshev inequalities, Different notions of convergence. Weak law of large number, Central limit theorem.
	Estimation: Properties, Unbiased Estimator, Minimum Variance Unbiased Estimator, Rao-Cramer Inequality and its attainment, Maximum Likelihood Estimator and its invariance property, Efficiency, Mean Square Error.
	Sample size determination. Testing of Hypotheses: Null and Alternative Hypotheses, Test Statistic, Error Probabilities, Power Function, Level of Significance, Neyman-Pearson Lemma.
Learning Outcome	Students will become familiar with principal concepts probability theory and statistics. This helps them to handle, mathematically, various practical problems arising in uncertain situations.
Assessment Method	Quiz / Assignment / ESE

Text Books:

- 1. Ross, S.M.(2008) Introduction to Probability Models, Ninth edition, Academic Press.
- 2. Statistical Inference (2007), G. Casella and R.L. Berger, Duxbury Advanced Series.

Reference Book:

1. An Introduction to Probability and Statistics, V.K. Rohatgi and A.K.Md. Ehsanes Saleh, John Wiley, 2nd Ed, 2009.

Course Number	ECS 5201
Course Credit	L-T-P-C: 3-0-2-4
Course Title	Artificial Intelligence
Learning Mode	Online
Learning Objectives	 To understand the foundational concepts and motivations behinrtificial Intelligence and intelligent agents. To learn and apply uninformed and informed search strategies for problem-solving. To explore local search techniques and optimization methods beyond classical search. To implement adversarial search techniques and problem reduction strategies. To formulate and solve Constraint Satisfaction Problems (CSPs) using advanced techniques.
Course Description	This course aims to provide students with a comprehensive understanding of the fundamental principles and techniques of Artificial Intelligence (AI). It covers the basics of intelligent agents and their environments, various problem-solving methods through search strategies, and techniques beyond classical search. Students will learn about adversarial search, constraint satisfaction problems, knowledge representation, reasoning, planning, and various learning techniques. The course prepares students to design and implement AI solutions for complex real-world problems.
Course Outline	 Introduction and motivation Artificial Intelligence, intelligent agents, nature of environments Problem-solving by searching: Example problems, uninformed, informed search strategies Uninformed/ blind search techniques: Breadth-first search (BFS), Depth-first search (DFS), Uniform-cost search (UCS) Informed search: Heuristic function design and evaluation, A* search Beyond classical search: local search techniques and optimization, hill climbing, simulated annealing, beam search Adversarial search: Games, optimal decision in games, minmax, alpha-beta pruning, partially observable games Problem reduction techniques: And-OR (AO) and AO* Constraint Satisfaction Problem (CSP): definition and examples of CSPs, basic techniques: backtracking search, forward checking, arc consistency

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

	 Knowledge Representation, Reasoning, and Planning: Propositional logic, first-order logic, inference, planning Learning Techniques: meta-heuristic (genetic algorithm), Bayesian, decision tree, etc. Some advanced techniques of AI and its applications Lab component: Implementation of above architectures.
Learning Outcome	By the end of this course, students will be able to:
	 Understand the foundational concepts and motivations behind Artificial Intelligence and intelligent agents. Apply uninformed and informed search strategies to solve example problems. Utilize local search techniques and optimization methods such as hill climbing, simulated annealing, and beam search. Implement adversarial search techniques including min-max, alpha-beta pruning, and strategies for partially observable games. Apply problem reduction techniques. Formulate and solve Constraint Satisfaction Problems (CSPs) using techniques like backtracking search, forward checking, and arc consistency. Represent knowledge using propositional and first-order logic, and perform inference and planning. Explore and apply various learning techniques such as genetic algorithms, Bayesian methods, and decision trees.
Assessment Method	Quiz / Assignment / ESE

Suggested Reading

- 1. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson.
- 2. Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: foundations of computational agents. Cambridge University Press.
- 3. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: Springer.

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Course Number	EMC 5202
Course Credit	L-T-P-C: 3-0-2-4
Course Title	Numerical Linear Algebra and Optimization Techniques
Learning Mode	Online
Learning	The objective of the course is to train students about the different numerical techniques
Objectives	to solve linear equations, linear least square problems and find eigen values of matrices
	as well as check the stability of numerical methods. Moreover, students would be able
	to perform modeling of convex programming problems and employ various classical and
	numerical optimization techniques and algorithms to solve these problems
Course Description	Numerical Linear Algebra and Optimization Techniques, as a basic subject for
	postgraduate students, provides the knowledge of various numerical techniques to solve
	linear equations as well as check the stability of numerical methods. Moreover, this
	course would help the students to models convex optimization problems and learn
	different algorithms to solve such problems with its applications in various problems
	arising in economics, science and engineering.
Course Content	Review of matrix Algebra, Norms and condition numbers of Matrix, Systems of
	Equations, Gaussian Elimination, LU, PLU and Cholesky Factorization, Iterative
	Solvers: Jacobi, Gauss Seidel, SOR and their convergence, Gram-Schmidt
	orthogonalization
	QR Factorization and Least Squares, Eigenvalues, Power method, Reduction to
	Hessenberg or Tridiagonal form, Rayleigh quotient, inverse iteration, QR Algorithm
	without and with shifts,
	Singular Value Decomposition and its applications
	Introduction to nonlinear programming, Convex Sets, Convex Functions and their
	properties.
	Unconstrained optimization of functions of several variables: Classical techniques.
	Colden Section Secret and Etheropei secret Designation descent methods. Conjugate
	direction Newton's and Quesi Newton methods
	Constrained optimization of functions of several variables. Lagrange Multiplier method
	Karush Kuhn Tucker theory Constraint Qualifications Convey optimization
	Marit functions for constrained minimization logarithmic harrier function for inequality
	constraints A basic barrier-function algorithm
	Practice of algorithms using Software
Learning Outcome	On successful completion of the course, students should be able to:
Learning Outcome	1 Understand different Matrix factorization method and employ them to solve
	linear equations and linear least square problems
	2. To comprehend the basic computer arithmetic and the concepts of conditioning
	and stability of a numerical method.
	3. Understand the terminology and basic concepts of various kinds of convex
	optimization problems and solve different solution methods to solve convex
	Programing problem.
Assessment Method	Quiz / Assignment /ESE

Text Books:

1. Lloyd N. Trefethen, David Bau III: Numerical Linear Algebra, 1st Edition, SIAM, Philadelphia (1997)

- Edwin K. P. Chong, Stanislaw H. Zak: An Introduction to Optimization, 4th Edition, Wiley India (2017)
- 3. Gilbert Strang: Lecture Notes for Linear Algebra, Wellesley Cambridge Press, SIAM (2021) **Reference Books:**
- 1. Stephan Boyd and Lieven. Vandenberghe: Convex Optimization, Cambridge University Press (2004)

Course Number	ECC 6101
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Application Development Frameworks
Learning Mode	Online
Learning Objectives	 Ability to build Java-based applications using the Spring framework and integrate them with relational databases and other enterprise systems. Understanding of key concepts such as aspect-oriented programming, dependency injection, and object-relational mapping. Familiarity with common Java development tools and techniques, including Spring MVC and RESTful web services. Ability to evaluate and select appropriate application development frameworks for specific use cases.
Course Description	This course teaches students to build Java-based applications using the Spring framework, integrating with relational databases and enterprise systems. It covers key concepts like aspect-oriented programming, dependency injection, and object-relational mapping, along with common Java development tools and techniques, including Spring MVC and RESTful web services.
Course Outline	MODULE 1: Introduction to Application Development Frameworks
	 Overview of application development frameworks Advantages and disadvantages of using frameworks Introduction to the Spring framework Configuration and setup of Spring-based applications Bean life cycle and dependency injection Introduction to aspect-oriented programming MODULE 2: Database Integration with Spring
	 Data access with Spring and JDBC Simplifying JDBC-based data access Using object-relational mapping (ORM) with Spring Introduction to Hibernate in a Spring environment Driving database transactions in a Spring environment MODULE 3: Web Development with Spring Introduction to web application architecture Overview of Spring MVC Restful web services with Spring MVC Securing web applications with Spring Security Rendering multiple content types with Spring

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

	MODULE 4: Integration with Enterprise Systems
	 Introduction to enterprise information connectivity Serialization and remoting with Spring Introduction to messaging and transactions Working with JMS and transactional JMS Distributed transaction management
	By the end of this course, students will be able to:
Learning Outcome	 Understand the basics of application development frameworks and their importance in building complex software applications. Gain hands-on experience in using Spring, one of the most widely used Java-based application development frameworks. Develop proficiency in integrating Spring with relational databases, web services, and other enterprise systems. Choose and evaluate appropriate frameworks for specific application development needs.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS:	
1. Rod Johnson e	t al., "Professional Java Development with the Spring Framework," Wiley Pub,
2005. 2 Mark Eicher "	Spring Integration in Action "Manning Publications, 2011
2. Mark Fisher, 3. Craig Walls an	opting integration in Action, Manning Publications, 2011.
J. Craig walls all	a Nyan Dieuchoach, Spring in Action, Manning Fuorications, 2007.

4. Paul Fisher and Solomon Duskis, "Spring Persistence with Hibernate," Apress, 2009.

Course Number	ECC 6102
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Python for Cloud Computing
Learning Mode	Online
Learning Objectives	 To understand the fundamental concepts and components of Python Language. To understand how the loops, functions, modules and libraries are handled in Python Language. To understand how Object-Oriented Programming adopted in Python. To understand the debugging and testing (unit) techniques along with regular expressions. To understand how to develop web applications using Python. To understand how to automate tasks using Python. To understand how to use Python in automating tasks in Cloud Environment (AWS / GCP).
Course Description	This course covers fundamental Python concepts, including loops, functions, modules, libraries, and object-oriented programming. Students will learn debugging, unit testing, regular expressions, web development, task automation, and using Python for cloud automation in AWS and GCP.
Course Outline	Module 1: Introduction to Python
	History & need of Python, Application of Python, Installing Python, Program structure, Interactive Shell, Executable or script files, User Interface or IDE.Module 2: Python Loops, Functions, Modules and Libraries
	Conditional Statements, The Range Function, Built-In Function, Structure of Python Functions (e.g map, zip, reduce etc.), User Defined Functions
	Module 3: Python Data Structure and OOP
	Class and objects, OOPS Concept, Error handling, Python Debugger
	Module 4: Cloud application development using Python
	Develop a basic application using Django & Flask Framework, Deploy the developed application in the Cloud, connect to the Database, Building API in Python

Learning Outcome	 By the end of this course, students will be able to: Code in Python for making decisions and construct loops. Utilize in-built and user-defined functions in Python. Make use of libraries in Python. Design, plan and develop web application using Python modules. Use Python and handle cloud resources remotely.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS: 1. Gift, N. (2019) 2. Conway, K., & 3. Garnaat, M. (2) 4. Sbarski, P. (20) 5. Murty, J. (200) O'Reilly Media). Python for DevOps: Learn Ruthlessly Effective Automation. O'Reilly Media. & Smith, B. (2020). Cloud Native Python. O'Reilly Media. 2011). Python and AWS Cookbook. O'Reilly Media. 2017). Building Serverless Architectures. O'Reilly Media. 208). Programming Amazon Web Services: S3, EC2, SQS, FPS, and SimpleDB.

Course Number	ECC 6103
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Advanced Cloud Computing
Learning Mode	Online
Learning Objectives	This course aims to help the students understand (a) how and why cloud systems work and the cloud technologies that manifest these concepts, such as those from Amazon AWS and Microsoft Azure; (b) distributed systems concepts like virtualisation, data parallelism, CAP theorem, and performance analysis at scale; (c) Big Data programming patterns such as Map-Reduce (Hadoop), Vertex-centric graphs (Giraph), Continuous Dataflows (Storm), and NoSQL storage systems to build Cloud applications; (d) Cloud native computing and micro-services
Course Description	This course provides an in-depth understanding of cloud computing, virtualisation, and distributed systems. It covers foundational concepts, advanced techniques, and real-world applications. Students will explore various aspects of cloud infrastructure, virtualisation technologies, distributed algorithms, and cloud-native computing. By the end of the course, students will be equipped with the knowledge and skills to design, implement, and manage cloud-based solutions and distributed systems effectively.
Course Outline	Introduction to Clouds, Virtualization, and Virtual Machines.Network Virtualization and Geo-distributed Clouds.Leader Election in Cloud, Distributed Systems, and Industry Systems.Classical Distributed Algorithms and Industry Systems.Consensus, Paxos, and Recovery in Clouds.Cloud Storage: Key-value Stores/NoSQL Systems and their Use in IndustrySystems.Cloud Applications: MapReduce, Spark, and Apache Kafka.Cloud Native Computing and Micro-services.

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Learning Outcome	 Cloud Computing as a Distributed Systems: Explain and contrast the role of Cloud computing within this space. Cloud Virtualization, Abstractions and Enabling Technologies: Explain virtualisation and their role in elastic computing. Characterise the distinctions between Infrastructure, Platform and Software as a Service (IaaS, PaaS, SaaS) abstractions, and Public and Private Clouds, and analyse their advantages and disadvantages. Programming Patterns for "Big Data" Applications on Cloud: Demonstrate using Map-Reduce, Vertex-Centric and Continuous Dataflow programming models. Application Execution Models on Clouds: Compare synchronous and asynchronous execution patterns. Design and implement Cloud applications that can scale up on a VM and out across multiple VMs. Illustrate the use of NoSQL Cloud storage for information storage. Performance, scalability and consistency on Clouds: Explain the distinctions between Consistency, Availability and Partitioning (CAP theorem), and discuss the types of Cloud applications that exhibit these features.
Assessment Method	Quiz / Assignment / ESE

Suggested Reading

- Distributed and Cloud Computing From Parallel Processing to the Internet of Things; Kai Hwang, Jack Dongarra, Geoffrey Fox Publisher: Morgan Kaufmann, Elsevier, 2013.
- Cloud Computing: Principles and Paradigms; Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski Publisher: Wiley, 2011.
- Distributed Algorithms Nancy Lynch Publisher: Morgan Kaufmann, Elsevier, 1996.
- Cloud Computing Bible Barrie Sosinsky Publisher: Wiley, 2011.
- Cloud Computing: Principles, Systems and Applications, Nikos Antonopoulos, Lee Gillam Publisher: Springer, 2012.

Course Number	ECC 6201
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Cloud Computing Architecture
Learning Mode	Online
Learning Objectives	 Understand the fundamentals of cloud computing architecture and its benefits and challenges. Learn about the different types of cloud computing and their applications. Develop skills in managing and deploying cloud services. Gain knowledge in cloud-based application development. Analyze case studies and learn to evaluate if cloud computing is the right fit for specific requirements.
Course Description	This course covers the fundamentals of cloud computing architecture, its benefits, and challenges, as well as the different types and applications of cloud computing.
Course Outline	MODULE 1 - CLOUD COMPUTING FUNDAMENTALS
	 Cloud Computing definition, private, public and hybrid cloud. Cloud types: IaaS, PaaS, SaaS. Benefits and challenges of cloud computing, public vs private clouds. Role of virtualization in enabling the cloud. Business Agility: Benefits and challenges to Cloud architecture.
	MODULE 2 - CLOUD APPLICATIONS
	 Technologies and the processes required when deploying web services. Deploying a web service from inside and outside a cloud architecture, advantages and disadvantages.
	MODULE 3 - MANAGEMENT OF CLOUD SERVICES
	 Reliability, availability and security of services deployed from the cloud. Performance and scalability of services. Tools and technologies used to manage cloud services deployment. Cloud Economics: Cloud Computing infrastructures available for implementing cloud-based services. Economics of choosing a Cloud platform for an organization, based on application requirements, economic constraints and business needs (e.g. Amazon, Microsoft and Google, Salesforce.com, Ubuntu and Redhat).
	MODULE 4 - APPLICATION DEVELOPMENT
	 Service creation environments to develop cloud-based applications. Development environments for service development. AWS, Azure, Google App.

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

	MODULE 5 - CLOUD IT MODEL
	 Analysis of Case Studies when deciding to adopt cloud computing architecture. How to decide if the cloud is right for your requirements. Cloud-based service, applications and development platform deployment so as to improve the total cost of ownership.
Learning Outcome	By the end of this course, students will be able to:
	 Understand the fundamental concepts and components of cloud computing architecture. Develop skills in deploying and managing cloud services. Gain knowledge in cloud-based application development. Analyze case studies and evaluate if cloud computing is the right fit for specific requirements. Be able to identify and choose the appropriate cloud computing platform for an organization based on application requirements, economic constraints, and business needs.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS:	
1. "Cloud Computing: Principles and Paradigms" by Rajkumar Buyya, James Broberg, and Andrzej	
Goscinski.	
2. "Cloud Computin	ng: A Practical Approach" by Toby Velte, Anthony Velte, and Robert Elsenpeter.

3. "Cloud Native: Using Containers, Functions, and Data to Build Next-Generation Applications" by Boris Scholl, Trent Swanson, and Peter Jausovec.

4. "Cloud Computing for Dummies" by Judith Hurwitz, Robin Bloor, Marcia Kaufman, and Fern Halper.

Course Number	ECC 6202
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Cloud Security
Learning Mode	Online
Learning Objectives	Understand the fundamental concepts of cloud security Learn about the various security threats and vulnerabilities in the cloud environment Understand the different technologies and techniques for securing cloud infrastructure Learn about legal and compliance issues related to cloud security
Course Description	This course covers fundamental cloud security concepts, including security
Course Description	threats, vulnerabilities, and technologies for protecting cloud infrastructure. Students will explore legal and compliance issues and learn best practices for implementing and managing cloud security effectively.
Course Outline	MODULE 1 - INTRODUCTION TO CLOUD SECURITY
	 Overview of cloud computing and cloud security Cloud deployment models Cloud service models Cloud security risks and challenges Security responsibilities in the cloud Cloud security best practices MODULE 2 - CLOUD SECURITY THREATS AND VULNERABILITIES Types of security threats in the cloud Cloud security risks and vulnerabilities Threats to cloud infrastructure, applications, and data Attacks on cloud-based services Virtualization security Web application security
	MODULE 3 - CLOUD SECURITY TECHNOLOGIES
	 Encryption and key management in the cloud Identity and access management in the cloud Network security in the cloud Virtualization security technologies Cloud-based security solutions MODULE 4 - CLOUD SECURITY MANAGEMENT Security governance in the cloud Compliance and regulatory issues in the cloud Security incident response in the cloud Cloud security monitoring and auditing

	 MODULE 5 - CLOUD SECURITY BEST PRACTICES Secure configuration of cloud services and infrastructure
	 Managing security in the cloud
	 Training and awareness for cloud security
	• Disaster recovery and business continuity in the cloud.
Learning Outcome	• By the end of this course, students will be able to:
	• Understand the concepts and principles of cloud security.
	• Identify security threats and vulnerabilities in the cloud environment.
	• Analyze and evaluate security requirements for cloud infrastructure.
	• Implement security measures to protect cloud infrastructure and applications.
	• Manage and monitor cloud security.
	• Understand legal and compliance issues related to cloud security.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS:	
1. "Cloud C	omputing Security: Foundations and Challenges" by John R. Vacca, Syngress (2016)
2. "Cloud S	Security Automation: Get to secure faster in the cloud" by Prashant Priyam, Packt
Publishing	g (2018)
3. "Building	g a Comprehensive IT Security Program: Practical Guidelines and Best Practices" by
Jeremy W	ittkop, Syngress (2016)

Course Number	ECC 6203
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Advanced Edge Computing
Learning Mode	Online
Learning Objectives	 Upon successful completion of this course, students will be able to: Understand the fundamental concepts and limitations of cloud computing and identify the advantage of edge computing.
	 Describe various edge computing architectures and differentiate them from traditional cloud models; Comprehend the principles of distributed systems as they apply to edge computing environments;
	 Explore the functionalities of edge data centers and lightweight edge clouds; Deploy and manage containerized applications using Docker and Kubernetes in edge computing contexts; Implement and evaluate edge storage systems and end-to-end edge
	computing technologies for real-world applications.
Course Description	This course delves into the emerging field of edge computing, providing a comprehensive understanding of its architectures, systems, and technologies. Students will explore the limitations of traditional cloud computing and learn
	about the advantages and applications of edge computing. The course covers key concepts in distributed systems, edge data centers, and lightweight edge clouds and includes hands-on experience with Docker, Kubernetes, and edge storage systems. Additionally, students will gain insights into end-to-end edge pipelines using MQTT and Kafka and examine advanced edge computing technologies. By the end of the course, students will be equipped with the knowledge and skills to design, implement, and manage edge computing solutions.
Course Outline	Cloud Computing Basics.Edge Computing basics. Edge Computing Use-Cases, Benefits. Different Types of Edge. Edge Deployment Modes. Edge Computing in 5G, Multi-access Edge Computing (MEC) and Mobile Edge Computing.
Learning Outcome	 Critically evaluate advanced edge computing architectures, such as hierarchical, mesh, and hybrid models, considering their suitability for specific use cases and environments. Analyse emerging technologies and trends in advanced edge computing,
	 such as edge AI, blockchain, and serverless computing, and assess their potential impact. Design and implement innovative edge computing solutions that leverage advanced techniques, such as federated learning, edge caching, and dynamic resource allocation. Evaluate the performance and scalability of advanced edge computing systems using benchmarking, simulation, and experimentation.

	 Investigate advanced techniques for ensuring security, privacy, and data integrity in edge computing ecosystems, such as secure enclaves, encryption, and access control mechanisms. Explore specialised applications of advanced edge computing in domains such as healthcare, smart cities, and autonomous systems, analysing their requirements and challenges.
Assessment Method	Quiz / Assignment / ESE
Suggested Reading	
1. Fog and Edge Computing: Principles and Paradigms, Rajkumar Buyya (Editor), Satish Narayana Srirama (Editor), Wiley, 2019.	
2. Cloud Computing	r: Principles and Paradigms, Editors: Raikumar Buyya, James Broberg, Andrzei M.

- Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wiley, 2011.
- 3. Cloud and Distributed Computing: Algorithms and Systems, Rajiv Misra, Yashwant Patel, Wiley 2020.
- 4. Besides these books, we will provide Journal papers as references.

Course Number	ECC 6204
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Parallel Algorithms
Learning Mode	Online
Learning Objectives	 Understand the fundamental principles of parallel computing and parallel algorithm design. Learn how to develop efficient parallel algorithms for solving complex computational problems. Gain proficiency in analyzing the performance and scalability of parallel algorithms. Explore parallel programming models and architectures used in cloud and distributed computing environments. Develop practical skills in implementing parallel algorithms on modern parallel platforms, including multi-core processors and cloud computing environments.
Course Description	This course provides a comprehensive introduction to parallel algorithms and their applications in cloud and distributed computing environments. Students will learn the theoretical foundations of parallel computing, including models of parallel computation, algorithm design techniques, and complexity analysis. The course also covers various parallel algorithmic techniques, such as divide-and-conquer, dynamic programming, and greedy methods, applied to problems like sorting, searching, graph algorithms, and numerical computations. Emphasis will be placed on understanding the scalability, efficiency, and communication overhead of parallel algorithms, as well as hands-on experience in implementing parallel algorithms on cloud-based platforms and multi-core systems.
Course Outline	 Module 1: Introduction to Parallel Computing Basics of parallel computing and its importance in modern applications. Models of parallel computation: PRAM (Parallel Random Access Machine) and its variants (EREW, CREW, CRCW). Parallel programming paradigms: shared memory, distributed memory, and hybrid models. Overview of parallel architectures: multi-core processors, GPUs, cloud-based parallel computing. Speedup, efficiency, and Amdahl's Law. Module 2: Parallel Algorithm Design Techniques Parallel divide-and-conquer algorithms: parallel merge sort, quicksort. Parallel dynamic programming techniques: matrix chain multiplication, longest common subsequence. Parallel greedy algorithms: minimum spanning tree (Kruskal's and Prim's algorithms), shortest path algorithms. Parallel search algorithms: parallel BFS, DFS, and search algorithms on trees and graphs. Parallel prefix computation and parallel reduction

	Module 3: Parallel Algorithms for Numerical Computation
	 Parallel algorithms for matrix operations: matrix multiplication, matrix inversion, LU decomposition. Parallel algorithms for solving linear systems: Gaussian elimination, Jacobi and Gauss-Seidel methods. Parallel FFT (Fast Fourier Transform) algorithms. Parallel random number generation and Monte Carlo methods. Applications of numerical parallel algorithms in scientific computing.
	Module 4: Parallel Algorithms in Cloud and Distributed Environments
Learning Outcome	 Distributed computing and cloud-based parallelism: MapReduce, Hadoop, and Spark frameworks. Designing parallel algorithms for cloud environments: fault tolerance, load balancing, and data locality. Communication overhead and synchronization in distributed systems. Performance analysis: scalability, speedup, and cost models in cloud computing environments. Case studies: real-world applications of parallel algorithms in cloud computing, including big data processing, machine learning, and scientific simulations. Ability to design and implement efficient parallel algorithms for a variety of computational problems. Understanding of parallel programming paradigms and models used in cloud and distributed computing environments. Proficiency in analyzing the scalability and performance of parallel algorithms
	 Practical experience in implementing parallel algorithms on cloud-based platforms and multi-core systems
Assessment Method	Quiz / Assignment / End Semester Exam (ESE)
TEXTBOOKS:	
1. "Introdu	ction to Parallel Algorithms" by Joseph JáJá, Addison-Wesley.
2. "Designi	ng and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineer	ring" by Ian Foster, Addison-Wesley.
3. "Parallel	Computing: Theory and Practice" by Michael J. Quinn, McGraw-Hill.
4. "Parallel	Algorithms and Matrix Computation" by Richard S. Varga, Springer.
Other Sy	stems" by Donald Miner and Adam Shook, O'Reilly Media.

Course Number	ECC 6205
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Data Virtualization and Dashboards
Learning Mode	Online
Learning Objectives	 To introduce students to the concept of data virtualization and its applications in the field of big data and blockchain. To provide students with hands-on experience using popular data virtualization tools to create a unified view of data from multiple sources and running queries on the views in optimized manner. To teach students how to design effective dashboards that provide meaningful insights into complex data sets and allows intelligent analytics o data. To explore advanced topics in data virtualization and dashboards, such as real-time data integration, self-service analytics, and integration with big data platforms and blockchain.
Course Description	This course introduces data virtualization concepts and applications in big data and blockchain, offering hands-on experience with popular tools for unified data views and optimized querying. Students will learn to design effective dashboards for intelligent analytics and explore advanced topics, including real-time integration, self-service analytics, and integration with big data platforms and blockchain.
Course Outline	 Module 1: Introduction to Data Virtualization: Overview of data virtualization and its benefits, Data Silos, Data Partitioning, performance parameters of data virtualization. Understanding data integration and how it differs from data virtualization, Centralized vs Peer-2-peer Data Integration, ETL, Mediation and Federated Databases. Data Transformation, Master Data and Metadata Management in Data Virtualization. Use cases for data virtualization. Challenges and limitations of data virtualization. Introduction to popular data virtualization tools and their architectures.
	 Building a virtual data layer with a popular data virtualization tool such as Denodo and TIBCO, Redhat JBOSS. Connecting to various data sources (relational databases, big data systems, cloud applications, web applications, etc.). Creating views and queries using the selected data virtualization tool, query optimization and caching in data virtualization. Handling complex data transformations with the selected tool.

	• Managing metadata and security in a virtual environment.
	Module 3. Data Visualization and Dashboards
	Introduction to data visualization and dashboard design
	 Mitoduction to data visualization and dashooard design. Kay principles of effective data visualization
	 Rey principles of effective data visualization. Overview of perpulse deshboard tools (a.g. Tableau, Dewer DI
	• Overview of popular dashboard tools (e.g. Tableau, Power BI, OlikView). Creating reports in Tableau and Power BI
	 Best practices for designing interactive dashboards
	 Connecting virtual data sources to dashboards
	Connecting virtual data sources to dashooards.
	Module 4: Advanced Topics in Data Virtualization and Dashboards
	• Using data virtualization to support self-service analytics,
	Experimenting self-service analytics in Denodo and Power BI.
	Real-time data integration and processing with data
	virtualization.
	 Integrating data virtualization with big data platforms and blockchain.
	Best practices for performance tuning and optimization in data virtualization
Learning Outcome	 Future trends in data virtualization and dashboard design. Students will be able to describe the benefits and challenges of data virtualization and how it differs from traditional data integration approaches.
	• Students will be able to create a virtual data layer using a popular data virtualization tool and connect to various data sources, including relational databases his data sources and should emplications.
	• Students will be able to design effective dashboards using popular dashboard
	 students will be able to design effective dashboards using popular dashboard tools and connect virtual data sources to create interactive visualizations.
	• Students will be able to identify and apply advanced techniques in data
	virtualization and dashboard design, such as real-time data processing, self-
	service analytics, and integration with big data platforms and blockchain.
Assessment Method	Quiz / Assignment / ESE
Suggested Reading	
	1. Data Virtualization for Business Intelligence Systems: Revolutionizing Data
	Integration for Data Warehouses (Rick van der Lans)
	2. Data Visualization: A Practical Introduction (Kieran Healy)
	3. The Big Book of Dashboards: Visualizing Your Data Using Real-World Business Scenarios (Steve Weyler, Jeffrey Shaffer, and Andy Cotgrassia)
	4. Building a Modern Data Center: Principles and Strategies of Design (Scott D.
	Lowe and David M. Davis)

Course Number	ECC 6301
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Cloud Strategy Planning and Management
Learning Mode	Online
Learning Objectives	 Understand the importance of developing a cloud computing-based IT strategy to deliver on strategic business objectives Explore the role of IT leaders in planning and managing IT strategic development in the organization Analyze various business strategy models to gain competitive advantage for organizations Learn the best practices for managing resources and realizing benefits from Private/Public Cloud IT services
Course Description	This course emphasizes developing a cloud computing-based IT strategy to meet business objectives and explores the role of IT leaders in strategic planning and management. It covers business strategy models for gaining competitive advantage and best practices for managing resources and leveraging private/public cloud IT services.
Course Outline	MODULE 1: Developing Business Strategy
	Investigating business strategy models to gain competitive advantage for organizations, SWOT/PEST, Economies of scale, Porter's 3 Strategies and 5 Competitive Forces, D'Aveni's hyper-competition models
	MODULE 2: Strategic IT Leadership in the Organization
	Roles of the strategic IS/IT leaders such as Chief Information Officer (CIO) and the Chief Technology Officer (CTO) in planning and managing IT Strategic development in the organization
	MODULE 3: Planning a Cloud Computing-based IT Strategy
	Developing an IT strategy to deliver on strategic business objectives in the business strategy. IT Project planning in the areas of ITaaS, SaaS, PaaS and IaaS are essential in delivering a successful strategic IT Plan
	MODULE 4: SOA and Business Agility
	Shared services delivered by a Service Oriented Architecture (SOA) in a Private or Public Cloud.

	Services, Databases, and Applications on demand
	The effect on Enterprise Architecture and its traditional frameworks such as
	Zachman and The Open Group Architecture Framework (TOGAF)
	MODULE 5: Benefit Realization and IT Governance
	Managing resources (people, process, technology), to realize benefit from
	Private/Public Cloud IT services (IaaS, PaaS, PraaS, SaaS)
	Gartner's 5 pillars of benefit realization
	IT governance as a service in measuring the delivery of IT Strategy from Cloud IT
	Services using Sarbannes Oxley (CobiT) and other commonly- used approaches
Learning Outcome	By the end of this course, students will be able to:
	• Develop an IT strategy to deliver on strategic business objectives
	• Understanding of the role of IT leaders in planning and managing IT
	strategic development in the organization
	 Acquire knowledge of various business strategy models to gain
	competitive advantage for organizations
	Acquire knowledge of best practices for managing resources and realizing benefits from Private/Public Cloud IT services.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS:	
1. "Cloud Cor	nputing: Principles, Systems and Applications" by Nick Antonopoulos and Lee
Gillam	
2. "Enterprise	Cloud Computing: A Strategy Guide for Business and Technology Leaders" by
Brian J. Sal	kowski and Jay J. Heiser
3. "Cloud Con	nputing: From Beginning to End" by Mr. Ray J Rafaels
4. "Cloud Con	nputing for Business: The Open Group Guide" by Chris Harding

Course Number	ECC 6302
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Cloud-based DevOps
Learning Mode	Online
Learning Objectives	 Understand the principles of DevOps and its integration with cloud computing. Learn how to automate infrastructure provisioning, deployment, and monitoring in cloud environments. Explore tools and technologies for implementing continuous integration and continuous deployment (CI/CD) pipelines. Gain proficiency in containerization and orchestration using Docker and Kubernetes in cloud-native environments. Develop hands-on skills in managing cloud-based applications using DevOps practices and cloud-native tools.
Course Description	This course provides an in-depth exploration of DevOps practices in cloud environments, focusing on automating infrastructure, deploying scalable applications, and implementing continuous integration and continuous delivery (CI/CD) pipelines. Students will learn to use cloud-native tools for provisioning and monitoring cloud infrastructure, containerization, and orchestrating microservices using Docker and Kubernetes. The course emphasizes practical, hands-on learning to equip students with the skills needed to implement DevOps in real-world cloud-based systems.
Course Outline	Module 1: Introduction to Cloud-based DevOps
	 Overview of DevOps: Principles and benefits. Understanding the cloud-DevOps integration: Automation, scalability, and flexibility in cloud environments. Introduction to Infrastructure as Code (IaC) for managing cloud infrastructure. Cloud-native DevOps tools and services: AWS, Azure, Google Cloud. Module 2: Infrastructure Automation and IaC (Infrastructure as Code)
	 Overview of Infrastructure as Code (IaC): Concepts and best practices. Tools for IaC: Terraform, AWS CloudFormation, and Ansible. Automating cloud infrastructure provisioning using Terraform and CloudFormation. Version control for infrastructure: Managing infrastructure code in Git. Hands-on lab: Automating the deployment of cloud infrastructure using Terraform. Module 3: Continuous Integration and Continuous Deployment (CI/CD) Introduction to CI/CD pipelines: Key concepts and benefits. Building and managing CI/CD pipelines using Jenkins, GitLab CI, and AWS CodePipeline. Integration with cloud platforms: Deploying applications to AWS, Azure, or CCP

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

	• Automating testing and deployment workflows in the cloud.
	 Hands-on lab: Building a CI/CD pipeline and deploying an application on
	AWS.
	Module 4: Containerization and Orchestration with Docker and Kubernetes
	• Introduction to containers: Docker basics, containerization in the cloud.
	• Docker images and containers: Building, deploying, and managing containers.
	• Introduction to Kubernetes: Orchestrating containerized applications in the cloud.
	• Deploying and scaling microservices with Kubernetes in AWS EKS, Google Kubernetes Engine (GKE), or Azure AKS.
	• Hands-on lab: Deploying and scaling containerized applications using Docker and Kubernetes.
	Module 5: Monitoring, Logging, and Security in Cloud-based DevOps
	 Cloud-native monitoring and logging tools: AWS CloudWatch, Azure Monitor, and Google Stackdriver
	Implementing controlized logging with ELV (Electrosporch Logetech
	 Implementing centralized logging with ELK (Elasticsearch, Logstash, Kibana) stack.
	 Securing DevOps pipelines: Role-based access control (RBAC), secret management, and securing containerized applications.
	 Managing and monitoring application performance and security in the cloud
	 Hands on lab: Sotting up monitoring and logging for a cloud native
	• Italius-off lab. Setting up monitoring and logging for a croud-harve
	application using AWS Cloud Watch.
Learning Outcome	Ability to automate cloud infrastructure provisioning using Infrastructure
	as Code (IaC) tools.
	 Proficiency in building and managing CI/CD pipelines for cloud-native applications
	 Skills in containerization using Docker and orchestrating microservices
	• Skins in containenzation using Docket and orchestrating incroservices
	 Understanding of cloud native monitoring logging and security practices
	 Practical experience with cloud-based DevOns tools and technologies for
	real-world cloud deployments
Assessment Method	Ouiz / Assignment / End Semester Exam (ESE)
	Zuiz / Assignment / End bemester Exam (ESE)

TEXTBOOKS:

- "The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations" by Gene Kim, Jez Humble, Patrick Debois, and John Willis, IT Revolution Press.
- "Infrastructure as Code: Managing Servers in the Cloud" by Kief Morris, O'Reilly Media.
- "Kubernetes Up & Running: Dive into the Future of Infrastructure" by Kelsey Hightower, O'Reilly Media.
- "Learning Docker: Automating Infrastructure and Container Deployment with Docker" by Pethuru Raj, Jeeva S. Chelladhurai, and Vinod Singh, Packt Publishing.
- "Site Reliability Engineering: How Google Runs Production Systems" by Niall Richard Murphy, Betsy Beyer, Chris Jones, and Jennifer Petoff, O'Reilly Media.

Course Number	ECC 6303
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Distributed Systems
Learning Mode	Online
Learning Objectives	 To introduce the fundamental concepts of parallel computing and distributed systems. To develop an understanding of the structures of parallel and distributed systems. To explore the different algorithms and programming techniques used in parallel and distributed systems. To analyze the performance, synchronization, coordination, and fault tolerance of distributed systems.
Course Description	Gain foundational knowledge in parallel computing and distributed systems, exploring their structures, algorithms, and programming techniques. Analyze performance, synchronization, coordination, and fault tolerance to optimize distributed system designs for robustness and efficiency.
Course Outline	 Module 1: Introduction to Parallel and Distributed Systems Introduction to parallel computing and distributed systems. Solving problems in parallel. Structures of parallel and distributed systems. Instruction level parallel processing. Performance evaluation of parallel and distributed systems. Module 2: Communication and Network Protocols Characterization of distributed systems. Communication and computer networks. Distributed processing. Distributed operating systems. Client-server communications. Module 3: Distributed Systems Services
	 Remote procedure calls. File service. Name service. Module 4: Fault Tolerance and Security Distributed transactions and concurrency control. Fault tolerance and security. Synchronization and coordination. Distributed algorithms and research issues.

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Learning Outcome	• Students will be able to describe the basic concepts and structures of parallel and distributed systems.
	• Students will be able to implement parallel algorithms and programming techniques to solve problems in distributed systems.
	• Students will be able to analyze the performance and synchronization of
	distributed systems.
	• Students will be able to design fault-tolerant distributed systems.
Assessment Method	• Quiz / Assignment / ESE
Suggested Reading	
 "Distributed System 	ems: Concepts and Design" by George Coulouris, Jean Dollimore, and Tim
Kindberg. Publish	ed by Pearson Education.
 "Parallel Computi 	ng: Architectures, Algorithms and Applications" by Kai Hwang and Jack Dongarra.
Published by McC	Graw-Hill Education.
 "Distributed Syste 	ems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen.
Published by Pear	rson Education.

• "Distributed Algorithms" by Nancy Lynch. Published by Morgan Kaufmann Publishers.

Course Number	ECC 6304
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Machine Learning for Cloud Computing
Learning Mode	Online
Learning Objectives	 Understand the principles of machine learning (ML) and how it integrates with cloud computing platforms. Learn how to implement, deploy, and scale machine learning models using cloud-based services. Explore cloud-native machine learning tools and frameworks for developing, training, and optimizing models. Gain proficiency in using cloud infrastructure for machine learning workflows, including data preprocessing, model training, and deployment. Develop practical skills in applying machine learning to real-world applications in cloud environments, such as AWS, Google Cloud, and Azure.
Course Description	This course provides a comprehensive introduction to machine learning (ML) techniques with a focus on cloud computing platforms. Students will learn how to leverage cloud services to build, train, and deploy machine learning models efficiently. The course covers various machine learning algorithms, cloud-based tools, and ML workflows from data preprocessing to deployment. Hands-on labs will enable students to work with popular cloud ML services such as Amazon SageMaker, Google AI Platform, and Azure Machine Learning, applying these tools to solve real-world problems at scale.
Course Outline	Module 1: Introduction to Machine Learning and Cloud Computing
	 Overview of machine learning: Concepts, algorithms, and use cases. Machine learning in cloud environments: Benefits, challenges, and opportunities. Overview of cloud platforms: AWS, Azure, and Google Cloud. Cloud-native machine learning services: Amazon SageMaker, Google AI Platform, Azure Machine Learning. Introduction to cloud-based data storage and computing resources for ML. Module 2: Data Preprocessing and Feature Engineering in the Cloud Data collection and storage in cloud environments: S3, Google Cloud Storage, Azure Blob Storage. Data preprocessing techniques: Cleaning, normalization, encoding, and transformation. Feature selection and extraction for machine learning models. Tools for data preprocessing in the cloud: AWS Glue, Google Dataflow, Azure Data Factory. Hands-on lab: Preprocessing large datasets using cloud-native tools.

	Module 3: Machine Learning Algorithms and Model Training in the Cloud
	 Overview of supervised, unsupervised, and reinforcement learning algorithms. Training machine learning models in the cloud: AWS SageMaker, Google AI Platform, Azure ML. Distributed training: Leveraging cloud infrastructure for parallel model training. Hyperparameter tuning and optimization using cloud-based services. Hands-on lab: Training a machine learning model using Amazon SageMaker.
	Module 4: Machine Learning Model Deployment and Monitoring in the Cloud
	 Deploying machine learning models in the cloud: Real-time and batch inference. Model serving and endpoint management in cloud environments. Monitoring model performance: Model drift, retraining, and continuous monitoring. Autoscaling machine learning models in cloud environments for real-time predictions. Hands-on lab: Deploying and monitoring a machine learning model using Azure Machine Learning.
	Module 5: Advanced Topics in Machine Learning for Cloud Computing
	 Using AutoML for building machine learning models in the cloud. Machine learning pipelines: Automating end-to-end workflows. Security and privacy concerns in cloud-based machine learning. Case studies: Real-world applications of machine learning in cloud computing (e.g., healthcare, finance, IoT). Future trends: Federated learning, edge computing, and AI/ML integration in cloud environments.
Learning Outcome	 Ability to build, train, and deploy machine learning models using cloud- based platforms and services.
	 Proficiency in using cloud-native tools for data preprocessing, feature engineering, and model optimization. Understanding of distributed machine learning and the benefits of cloud infrastructure for large-scale ML tasks. Practical skills in deploying and monitoring machine learning models in production environments.
	 Knowledge of advanced topics in cloud-based machine learning, including AutoML, pipelines, and security considerations.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS	

- "Hands-On Machine Learning on Google Cloud Platform" by Giuseppe Ciaburro, Packt Publishing.
- "Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-Vision Projects Using Python, Keras & TensorFlow" by Anirudh Koul, O'Reilly Media.
- "Data Science on the Google Cloud Platform" by Valliappa Lakshmanan, O'Reilly Media.
- "Machine Learning Engineering in Action" by Ben Wilson, Manning Publications.
- "Mastering Machine Learning on AWS" by Saket S. R. Mengle, Packt Publishing.

Course Number	ECC 6401
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Meta Learning
Learning Mode	Online
Learning Objectives	 This course aims to help the students : (a) Gain a solid understanding of the foundational principles of meta-learning, including model evaluation, basic machine learning concepts, and their limitations. (b) Delve into advanced techniques such as deep learning, transfer learning, and multitask learning, and understand how these methodologies enhance meta-learning capabilities. (c) Develop proficiency in key meta-learning strategies, including model-based, metric-based, and optimization-based approaches, and familiarize yourself with advanced architectures like memory-augmented networks and conditional sequential neural networks (CSNNs). (d) Apply meta-learning techniques to practical applications in various domains, such as computer vision, natural language processing (NLP), reinforcement learning, healthcare, recommendation systems, and climate science, demonstrating the ability to solve complex real-world problems.
Course Description	This comprehensive course provides an in-depth overview of meta- learning, guiding students from foundational principles to advanced techniques. The curriculum begins with the basics of model evaluation, machine learning concepts, and their inherent limitations. Students will then explore advanced topics such as deep learning, transfer learning, and multitask learning, gaining a robust understanding of how these methodologies enhance the capabilities of meta-learning systems.Key meta-learning strategies are thoroughly examined, including model-based, metric-based, and optimization-based approaches. The course features advanced architectures like memory-augmented networks and conditional sequential neural networks (CSNNs), showcasing their roles in improving learning efficiency and effectiveness.Practical applications of meta-learning are highlighted across various fields, including computer vision, natural language processing (NLP), reinforcement learning, healthcare, recommendation systems, and climate science. These examples demonstrate the versatility and power of meta-learning in addressing complex, real-world problems. By the end of the course, students will be equipped with a robust understanding of meta-learning principles and techniques, enabling them to leverage these advanced methodologies to solve intricate problems across diverse domains.

Course Outline	Module 1: Meta-Learning Basics and Background
	Introduction to Meta-Learning
	 What is meta-learning?
	 Importance of meta-learning
	Key Concepts
	 Learning to learn
	 Few-shot learning
	 Generalization across tasks
	Module 2: Evaluation of Meta-Learning
	Evaluation Metrics
	 Accuracy, loss functions, and few-shot performance
	 Common benchmarks (Omniglot, Mini-ImageNet)
	Challenges
	 Overfitting and task distribution
	 Measuring generalization
	Module 3: Model-Based Meta-Learning Approaches
	Overview
	 Model-based methods overview
	 Memory-augmented models
	Techniques
	 LSTM-based meta-learning
	 Neural Turing Machines (NTMs)
	 Memory Networks
	Module 4: Metric-Based Meta-Learning Approaches
	Key Concepts
	 Learning similarity metrics
	Techniques
	 Siamese networks
	 Prototypical networks
	 Matching networks
	Module 5: Optimization-Based Meta-Learning Approaches
	Overview
	 Optimization-based methods overview
	Techniques
	 Model-Agnostic Meta-Learning (MAML)
	Reptile algorithm
	 First-order methods

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

Learning Outcome	1. Understand and articulate the foundational principles of meta-
	learning
	2. Apply probabilistic modeling and Bayesian inference to quantify
	uncertainty and improve model robustness in decision-making
	processes.
	3. Analysis of Optimization-Based Meta-Learning Approaches.
	4. Explore and address new challenges in emerging applications.
Assessment Method	Quiz / Assignment / ESE

Textbook:

- 1. Zou, L., 2022. *Meta-learning: Theory, algorithms and applications*.
- 2. Brazdil, P., Van Rijn, J.N., Soares, C. and Vanschoren, J., 2022. *Metalearning: applications to automated machine learning and data mining* (p. 346).

Course Number	ECC 6402
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Service Oriented Architecture and Web Security
Learning Mode	Online
Learning Objectives	 To provide an overview of XML Technology and modeling databases in XML. To provide an overview of Service Oriented Architecture and Web services and their importance. To introduce Security solutions in XML and Web Services and to introduce Security standards for Web Services.
Course Description	Explore XML technology and database modeling, along with an introduction to Service Oriented Architecture (SOA) and Web services, emphasizing their significance in modern IT landscapes. Delve into XML and Web services security solutions, covering essential standards and best practices for securing web-based applications.
Course Outline	Module 1: XML TECHNOLOGY
	 Introduction to XML and its usage in Web technology Name Spaces and their usage in XML XML Document Structure Structuring with Schemas and DTD Modeling Databases in XML XQuery
	Module 2: SOA BASICS
	 Service Oriented Architecture (SOA) Comparison of SOA with Client-Server and Distributed architectures Characteristics and Benefits of SOA Principles of Service Orientation Service Layers Business Process Management
	Module 3: WEB SERVICES
	 SOA and Web Services Web Services Protocol Stack Service descriptions WSDL (Web Services Description Language) Messaging with SOAP (Simple Object Access Protocol) Service discovery UDDI (Universal Description, Discovery, and Integration)

	Service-Level Interaction patterns
	• XML and Web Services
	• Enterprise Service Bus
	• .NET and J2EE Interoperability
	Module 4: WS TECHNOLOGIES AND STANDARDS
	 Web Services Technologies: JAX-RPC, JAX-WS Web Service Standards: WS-RM (Web Services Reliable)
	Messaging), WS-Addressing, WS-Policy
	• Service Orchestration and Choreography
	• Composition Standards: BPEL (Business Process Execution Language)
	Service Oriented Analysis and Design
	Module 5: XML AND WS SECURITY
	XML Security Overview
	Canonicalization
	XML Security Framework
	XML Encryption
	• XML Signature
	 XKMS (XML Key Management Specification) Structure
	Web Services Security
	• XACML (eXtensible Access Control Markup Language) WS-Security
	WS-Security
Learning Outcome	By the end of this course, students will be able to:
	• Understand the basics of XML.
	• Learn the concepts of SOA and Web services, some of the prevailing
	standards and technologies of Web Services.
	• Learn the approaches for providing security for XML documents as well as
	messages exchanged among Web Services.
Assessment Method	Quiz / Assignment / ESE
TEXTBOOKS:	
1. Ron Schmelzer et a	al. "XML and Web Services", Pearson Education, 2008. (Unit 1 and 3)
2. Thomas Erl, "Serv	ice Oriented Architecture: Concepts, Technology, and Design", Pearson Education,
2005 (Unit 2, 3, 4,	and 5)
3. Frank P.Coyle, "X	KML, Web Services and the Data Revolution", Pearson Education, 2002 (Unit
5)	
4. James McGovern,	Sameer Tyagı, Michael E Stevens, Sunil Mathew, "Java Web Services
Architecture", Else	evier, 2011.
5. Mark O' Neill, et a	I., "Web Services Security", Tata McGraw-Hill Edition, 2003.

Course Number	ECC 6403
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Reinforcement Learning
Learning Mode	Online
Learning Objectives	 This course aims to help the students: (a) Understand the foundational concepts and mathematical frameworks of reinforcement learning. (b) Gain proficiency in key reinforcement learning algorithms, including dynamic programming, Monte Carlo methods, and temporal- difference learning (c) Apply deep reinforcement learning techniques to solve complex problems using methods such as deep Q-networks and policy gradient algorithms. (d) Explore recent advancements and applications of reinforcement learning, including multi-agent systems and ethical considerations
Course Description	This specialized course on reinforcement learning aims to give students a deep understanding of the algorithms and methodologies used to train agents to make decisions through trial and error. Students will learn to develop and implement reinforcement learning models by focusing on foundational theories and practical applications. Students will explore key concepts such as Markov decision processes, policy gradients, Q- learning, and deep reinforcement learning through a mix of theoretical lectures, coding exercises, and project-based learning. Upon completion, students will be equipped to design and apply reinforcement learning solutions to complex problems in fields such as robotics, game development, and autonomous systems, enhancing their expertise in this dynamic area of artificial intelligence.
Course Outline	 Foundations: Basics of machine learning and reinforcement learning (RL) terminology. Probability Concepts: Axioms of probability, random variables, distributions, and correlation. Markov Decision Process: Introduction to MDPs, Markov property, and Bellman equations. State and Action Value Functions: Concepts of MDP, state, and action value functions. Tabular Methods and Q-networks: Dynamic programming, Monte Carlo, TD learning, and deep Q-networks. Policy Optimization: Policy-based methods, REINFORCE algorithm, and actor-critic methods. Recent Advances and Applications: Meta-learning, multi-agent RL, ethics in RL, and real-world applications.

Continuing Education Programme Program: Executive M. Tech in Cloud Computing Curriculum and Syllabus-2024

	1. Mastery of fundamental principles and mathematical
Learning Outcome	frameworks of reinforcement learning.
	2. Proficiency in implementing key reinforcement learning algorithms and
	techniques.
	3. Ability to apply deep reinforcement learning methods to complex,
	real-world problems.
	4. Understanding of recent advancements in reinforcement learning and
	their ethical implications.
Assessment Method	Quiz / Assignment / ESE

Suggested Reading:

- Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto, The MIT Press (1 January 1998).
- Deep Reinforcement Learning Hands-On by Maxim Lapan, Packt Publishing Limited (21 June 2018).
- Algorithms for Reinforcement Learning by Csaba Szepesvari, Morgan and Claypool Publishers (2010)
- Deep Reinforcement Learning: Fundamentals, Research and Applications by Hao Dong, Springer Verlag (2020)

Course Number	ECC 6404
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Data Warehousing
Learning Mode	Online
Learning Objectives	 Understand the core concepts of data warehousing and its role in decision support systems. Learn to design and implement data warehouses, including data modeling and ETL (Extract, Transform, Load) processes. Explore various data warehousing architectures and the role of OLAP (Online Analytical Processing) in analyzing large datasets. Gain proficiency in query optimization and performance tuning for large-scale data warehouses. Develop practical skills in using data warehousing tools and technologies for real-world applications.
Course Description	This course provides a comprehensive introduction to data warehousing, focusing on the design, implementation, and management of large-scale data warehouses. Students will learn about data modeling techniques, the ETL process, and the design of data warehouse architectures. The course also covers OLAP systems and their role in performing multidimensional data analysis. Emphasis will be placed on optimizing query performance and implementing scalable solutions. Real-world applications and case studies will be used to demonstrate the role of data warehousing in business intelligence and decision-making processes.
Course Outline	Module 1: Introduction to Data Warehousing
	 Definition and significance of data warehousing in business intelligence. Key characteristics of a data warehouse: subject-oriented, integrated, time-variant, and non-volatile. Difference between operational databases and data warehouses. Overview of decision support systems and the role of data warehousing. Introduction to data warehousing architectures: centralized, federated, and multi-tier. Module 2: Data Warehouse Design and Modeling Data modeling for data warehouses: star schema, snowflake schema, and galaxy schema. Fact and dimension tables: characteristics, types, and relationships. Dimensional modeling: attributes, hierarchies, and measures. Surrogate keys and slowly changing dimensions (SCD). Case studies of designing a data warehouse for various industries (e.g., retail, finance, healthcare).

	Module 3: ETL Process (Extract, Transform, Load)
	 Overview of the ETL process: extracting data from source systems, transforming data for consistency and accuracy, and loading it into the data warehouse. Data cleansing, validation, and transformation techniques. Tools and technologies for automating the ETL process (e.g., Apache Nifi, Talend, Informatica). Managing ETL performance and error handling in large-scale environments. Real-world examples of ETL processes for data warehousing.
	Module 4: Online Analytical Processing (OLAP)
	 Introduction to OLAP and its role in multidimensional data analysis. OLAP operations: roll-up, drill-down, slicing, dicing, and pivoting. Types of OLAP systems: MOLAP (Multidimensional OLAP), ROLAP (Relational OLAP), and HOLAP (Hybrid OLAP). OLAP query performance optimization techniques. Applications of OLAP in business intelligence and decision-making.
	Module 5: Data Warehouse Performance Optimization and Scalability
	 Indexing and partitioning strategies for improving query performance in large data warehouses. Materialized views and query rewriting for optimization. Distributed and parallel data warehouses: managing performance across large datasets. Data warehouse maintenance: incremental loading and refreshing strategies. Best practices for scaling data warehouses in cloud environments.
	Module 6: Advanced Topics in Data Warehousing
	 Data warehousing in the cloud: AWS Redshift, Google BigQuery, and Azure Synapse Analytics. Big data and data warehousing integration: Hadoop and NoSQL systems in data warehousing. Data governance, security, and compliance in data warehouses. Real-world case studies of data warehouse implementation in business intelligence, finance, and healthcare industries. Future trends in data warehousing: real-time data warehousing, data lakes, and integration with AI/ML.
Learning Outcome	Ability to design, implement, and optimize large-scale data warehouses for decision support systems
	 Proficiency in dimensional modeling, ETL processes, and OLAP systems for data analysis. Skills in query optimization, indexing, and performance tuning in data warahouses.
	 Practical experience in using data warehousing tools and technologies for real-world business intelligence applications.

Assessment Method	Quiz / Assignment / End Semester Exam (ESE)
TEXTBOOKS:	
 "Data Warehousi India. "The Data Wareh Margy Ross, Wil "Building the Da "Data Warehouse Rizzi, McGraw-F 	ng: Concepts, Techniques, Products and Applications" by C.S.R. Prabhu, Prentice-Hall ouse Toolkit: The Definitive Guide to Dimensional Modeling" by Ralph Kimball and ey. ta Warehouse" by W.H. Inmon, Wiley. to Design: Modern Principles and Methodologies" by Matteo Golfarelli and Stefano Hill.